hongweipeng 发布的文章

聚类算法之K-means


起步

所谓聚类( Clustering ),就是将相似的事物聚集在一 起,而将不相似的事物划分到不同的类别的过程,是数据分析之中十分重要的一种手段。与此前介绍的决策树,支持向量机不同的监督学习不同,聚类算法是非监督学习( unsupervised learning ),在数据集中,并不清楚具体的类别。


回归算法之非线性回归


起步

非线性回归是线性回归的延伸,线性就是每个变量的指数都是 1,而非线性就是至少有一个变量的指数不是 1。生活中,很多现象之间的关系往往不是线性关系。选择合适的曲线类型不是一件轻而易举的工作,主要依靠专业知识和经验。常用的曲线类型有 幂函数,指数函数,抛物线函数,对数函数和S型函数


回归算法之线性回归


起步

线性回归是利用数理统计和归回分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法。与之前的分类问题( Classification )不一样的是,分类问题的结果是离散型的;而回归问题中的结果是数值型的。